Problem
Prove that if \(p, q \gt 0\) and \(p + q = 1\), then
\[ (p + \frac{1}{p})^2 + (q + \frac{1}{q})^2 \geq 25/2\]Proof
Since \(p, q \gt 0\) therefore \(p + \frac{1}{p} \gt 0 \) and \(q + \frac{1}{q} \gt 0 \). As \(QM \geq AM\) for positive numbers:
\[ \sqrt{\frac{(p + \frac{1}{p})^2 + (q + \frac{1}{q})^2}{2}} \geq \frac{(p + \frac{1}{p}) + (q + \frac{1}{q})}{2}\]Squaring both sides and rearranging:
\[\implies \frac{(p + \frac{1}{p})^2 + (q + \frac{1}{q})^2}{2} \geq [\frac{(p + q) + (\frac{1}{p} + \frac{1}{q})}{2}]^2\] \[\implies (p + \frac{1}{p})^2 + (q + \frac{1}{q})^2 \geq \frac{1}{2}[(p + q) + (\frac{1}{p} + \frac{1}{q})]^2\] \[\implies (p + \frac{1}{q})^2 + (q + \frac{1}{q})^2 \geq \frac{1}{2}[1 + (\frac{1}{p} + \frac{1}{q})]^2 \tag{1} \]Since \(AM \geq HM\), we have:
\[ \frac{p+q}{2} \geq \frac{2}{\frac{1}{p} + \frac{1}{q}} \]Using the fact that \(p + q = 1\) and rearranging:
\[ \frac{1}{p} + \frac{1}{q} \geq 4 \] \[ \implies 1+ (\frac{1}{p} + \frac{1}{q}) \geq 5 \] \[ \implies [1+ (\frac{1}{p} + \frac{1}{q})]^2 \geq 25 \] \[ \implies \frac{1}{2}[1+ (\frac{1}{p} + \frac{1}{q})]^2 \geq \frac{25}{2} \tag{2} \]From inequalities \((1)\) and \((2):\)
\[ (p + \frac{1}{p})^2 + (q + \frac{1}{q})^2 \geq 25/2 \]Hence, proved.
Reference
Problem 1.15 of Inequalities by Ozgur Kircak